
Natural SQL Statements
This section covers points you have to consider when using Natural SQL statements with DB2. These DB2-specific
points partly consist in syntax enhancements which belong to the Extended Set of Natural SQL syntax. The Extended
Set is provided in addition to the Common Set to support database-specific features.

This section covers the following topics:

Common Syntactical Items
CALLDBPROC
COMMIT
DELETE
INSERT
PROCESS SQL
READ RESULT SET
ROLLBACK
SELECT
UPDATE

Common Syntactical Items
The following syntactical items are either DB2-specific and do not conform to the standard SQL syntax definitions
(that is, to the Common Set of Natural SQL syntax) or impose restrictions when used with DB2 (see also SQL
Statements in the Natural Statements documentation).

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant. When running
dynamically, however, the use of host variables is restricted by DB2. For further details, refer to the relevant
literature on DB2 by IBM.

comparison

The following three comparison operators are specific to DB2 and belong to the Natural Extended Set.

 ¬ =
 ¬ >
 ¬ <

factor

The following three factors are specific to DB2 and belong to the Natural Extended Set:

special-register
scalar-function (scalar-expression, ...)
scalar-expression unit
case-expression

1Copyright Software AG 2002

factorNatural SQL Statements

scalar-function (???)

A scalar function (ohne Bindestrich, lt. IBM???) is a built-in function that can be used in the construction of scalar
computational expressions. Scalar functions are specific to DB2 and belong to the Natural Extended Set.

The scalar functions supported are listed in alphabetical order:

A - H I - R S - Z

ABS
ABSVAL
ACOS
ADD_MONTHS
ASIN
ATAN
ATAN2
ATANH
BLOB
CCSID_ENCODING
CEIL
CEILING
CHAR
CLOB
COALESCE
CONCAT
COS
COSH
DATE
DAY
DAYOFMONTH
DAYOFWEEK
DAYOFWEEK_ISO
DAYOFYEAR
DAYS
DBCLOB
DEC
DECIMAL
DEGREES
DIGITS
DOUBLE
DOUBLE-PRECISION
(Bindestrich???)
EXP
FLOAT
FLOOR
GRAPHIC
HEX
HOUR

IDENTITY_VAL_LOCAL
IFNULL
INSERT
INTEGER
JULIAN_DAY
LAST_DAY
LCASE
LEFT
LENGTH
LN
LOCATE
LOG
LOG10
LOWER
LTRIM
MAX
MICROSECOND
MIDNIGHT_SECONDS
MIN
MINUTE
MOD
MONTH
MULTIPLY_ALT
NEXT_DAY
NULLIF
POSSTR
POWER
QUARTER
RADIANS
RAISE_ERROR
RAND
REAL
REPEAT
REPLACE
RIGHT
ROUND
ROUND_TIMESTAMP
ROWID
RTRIM

SECOND
SIGN
SIN
SINH
SMALLINT
SPACE
SQRT
STRIP
SUBSTR
TAN
TANH
TIME
TIMESTAMP
TIMESTAMP_FORMAT
TO_CHAR
TO_DATE
TRANSLATE
TRUNC
TRUNC_TIMESTAMP
TRUNCATE
UCASE
UPPER
VALUE
VARCHAR
VARCHAR_FORMAT
VARGRAPHIC
WEEK
WEEK_ISO
YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar expressions
depends upon the scalar function. Multiple scalar expressions must be separated from one another by commas.

Copyright Software AG 20022

Natural SQL Statementsscalar-function (???)

Example:

SELECT NAME
 INTO NAME
 FROM SQL-PERSONNEL
 WHERE SUBSTR (NAME, 1, 3) = ’Fri’
 ...

column function (klein???mit Bindestrich erforderlich???)

The following column functions do not conform to standard SQL. They are specific to DB2 and belong to the
Natural Extended Set. Column functions operate on a set of values that derive from an expression (???) and return
the defined value (???) or the NULL value.

AVG
COUNT
COUNT_BIG
MAX
MIN
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR
VAR_POP
VAR_SAMP
VARIANCE
VARIANCE_SAMP

scalar-operator

The concatenation operator (CONCAT or "||") does not conform to standard SQL. It is specific to DB2 and belongs
to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to DB2 and belong to the Natural
Extended Set:

CURRENT APPLICATION ENCODING SCHEME
CURRENT DATE
CURRENT_DATE (???)
CURRENT DEGREE
CURRENT FUNCTION PATH
CURRENT_LC_CTYPE (???)
CURRENT LC_CTYPE
CURRENT LOCALE LC_CTYPE
CURRENT OPTIMIZATION HINT
CURRENT PACKAGESET
CURRENT_PATH
CURRENT PRECISION
CURRENT RULES
CURRENT SQLID
CURRENT SERVER
CURRENT TIME
CURRENT_TIME (???)

3Copyright Software AG 2002

column function (klein???mit Bindestrich erforderlich???)Natural SQL Statements

CURRENT TIMESTAMP
CURRENT TIMEZONE
CURRENT_TIMEZONE (???)
USER

A reference to a special register returns a scalar value.

Using the command SET CURRENT SQLID, the creator name of a table can be substituted by the current SQLID.
This enables you to access identical tables with the same table name but with different creator names.

units

Units, also called durations, are specific to DB2 and belong to the Natural Extended Set.

The following units are supported:

DAY
DAYS
HOUR
HOURS
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR
YEARS

case-expression

CASE
searched-when-clause ...
simple-when-clause

ELSE
NULL
scalar expression

END

Case-expressions do not conform to standard SQL and are therefore supported by the Natural SQL Extended Set
only.

Example:

 DEFINE DATA LOCAL
 01 #EMP
 02 #EMPNO (A10)
 02 #FIRSTNME (A15)
 02 #MIDINIT (A5)
 02 #LASTNAME (A15)
 02 #EDLEVEL (A13)
 02 #INCOME (P7)
 END-DEFINE
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 (CASE WHEN EDLEVEL < 15 THEN ’SECONDARY’
 WHEN EDLEVEL < 19 THEN ’COLLEGE’
 ELSE ’POST GRADUATE’
 END) AS EDUCATION, SALARY + COMM AS INCOME

Copyright Software AG 20024

Natural SQL Statementsunits

 INTO
 #EMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
 #EDLEVEL, #INCOME
 FROM DSN8510-EMP
 WHERE (CASE WHEN SALARY = 0 THEN NULL
 ELSE SALARY / COMM
 END) > 0.25
 DISPLAY #EMP
 END-SELECT
 END

CALLDBPROC
Related documentation:
CALLDBPROC in SQL Statements in the Natural Statements documentation. ???

The CALLDBPROC statement allows you to call DB2 stored procedures. It supports the result set mechanism of
DB2 Version 5 (???) and it enables you to call DB2 stored procedures written in Natural.

For a detailed description of the syntax of the statement, see the Natural Statements documentation.

If the CALLDBPROC statement is executed dynamically, all parameters and constants are mapped to the variables
of the following DB2 SQL statement:

CALL :hv USING DESCRIPTOR :sqlda statement

:hv denotes a host variable containing the name of the procedure to be called and :sqlda is a dynamically generated
sqlda describing the parameters to be passed to the stored procedure.

If the CALLDBPROC statement is executed statically, the constants of the CALLDBPROC statement are also
generated as constants in the generated assembler SQL source for the DB2 precompiler.

If the SQLCODE created by the CALL statement indicates that there are result sets (SQLCODE +466 and +464),
Natural for DB2 runtime executes a

DESCRIBE PROCEDURE :hv INTO :sqlda

statement in order to retrieve the result set locator values of the result sets created by the invoked stored procedure.
These values are put into the RESULT SETS variables specified in the CALLDBPROC statement. Each RESULT
SETS variable specified in a CALLDBPROC for which no result set locator value is present is reset to zero. The
result set locator values can be used to read the result sets by means of the READ RESULT SET statement as long as
the database transaction which created the result set has not yet issued a COMMIT or ROLLBACK.

If the result set was created by a cursor WITH HOLD, the result set locator value remains valid after a COMMIT
operation.

Unlike other Natural SQL statements, CALLDBPROC enables you (optionally!) to specify a SQLCODE variable
following the GIVING keyword which will contain the SQLCODE of the underlying CALL statement. If GIVING is
specified, it is up to the Natural program to react on the SQLCODE (error message NAT3700 is not issued by the
runtime).

Parameter data types supported by the CALLDBPROC statement:

5Copyright Software AG 2002

CALLDBPROCNatural SQL Statements

Natural Format/Length DB2 Data Type

An CHAR(n)

B2 SMALLINT

B4 INT

Bn
(n = not equal 2 or 4) (???)

CHAR(n)

F4 REAL

F8 DOUBLE PRECISION

I2 SMALLINT

I4 INT

Nnn.m NUMERIC(nn+m,m)

Pnn.m NUMERIC(nn+m,n)

Gn GRAPHIC(n)

An/1:m VARCHAR(n*m)

D DATE

T TIME
(see also TIME below)

TIME ???

The format of the Natural parameter (???) T has a wider range (???) than the DB2 TIME data type (fomat???).

As a result, converting the T value into the TIME value, the date (???) fraction and the tenths of a second part of the
relevant T field appear truncated in the equivalent (???) TIME field. Converting TIME into T, the date fraction (???)
is reset to 0000-01-02 (???) and the tenths of a second part is reset to 0 in Natural.

CALLMODE=NATURAL

This parameter allows DB2 stored procedures written in Natural to be invoked Stored procedures written in Natural
are Natural subprograms which execute in the stored procedure address space.

If the CALLMODE=NATURAL parameter is specified, an additional parameter describing the parameters passed to
the Natural stored procedure is passed from the client, i.e. caller, to the server, i.e. stored procedure. The parameter is
of format VARCHAR from the viewpoint of DB2. Therefore, every stored procedure written in Natural has to be
defined in the SYSIBM.SYSPROCEDURES table (only applies to DB2 for OS/390 Version 5 and below) or with
the CREATE PROCEDURE statement (DB2 UDB for OS/390 Version 6 and above) by using this VARCHAR
parameter as the first in its PARMLIST row.

From the viewpoint of the caller, i.e. the Natural program, and from the viewpoint of the stored procedure, i.e.
Natural subprogram, this additional parameter is invisible. It is passed as first parameter by the Natural for DB2
runtime and it is used as on the server side to build the copy of the passed data in the Natural thread and the
corresponding CALLNAT statement. Additionally, this parameter serves as a container for error information created
during execution of the Natural stored procedure by the Natural runtime. It also contains information on the library
where you are logged on and the Natural subprogram to be invoked.

The following table describes the first parameter passed between the caller and the stored procedure if CALLMODE
= NATURAL is specified.

Copyright Software AG 20026

Natural SQL StatementsTIME ???

NAME FORMAT PROCESSING MODE SERVER

STCBL I2 Input (size of following information)

Procedure Information

STCBLENG A4 Input (printable STCBL)

STCBID A4 Input (’STCB’)

STCBVERS A4 Input (version of STCB ’310 ’)

STCBUSER A8 Input (user ID)

STCBLIB A8 Input (library)

STCBPROG A8 Input (calling program)

STCBPSW A8 Unused (password)

STCBSTNR A4 Input (CALLDBPROC statement number)

STCBTCP A8 Input (procedure called)

STCBPANR A4 Input (number of parameters)

Error Information

STCBERNR A5 Output (Natural error number)

STCBSTAT A1 Unused (Natural error status)

STCBLIB A8 Unused (Natural error library)

STCBPRG A8 Unused (Natural error program)

STCBLVL A1 Unused (Natural error level)

STCBOTP A1 Unused (error object type)

STCBEDYL A2 Output (error text length)

STCBEDYT A88 Output (error text)

 A100 Reserved for future use

Parameter Information

FORMAT_DESCRIPTION A variable Input

The FORMAT_DESCRIPTION contains a description for each parameter passed to the stored procedure consisting
of parameter type, format specification and length. Parameter type is the AD attribute of the CALLNAT statement as
described in the Natural Statements documentation.

Each parameter has the following format description element in the FORMAT_DESC string

atl,p[,d1]....

where

a is an attribute mark which specifies the parameter type:

7Copyright Software AG 2002

CALLMODE=NATURALNatural SQL Statements

Mark Type Equivalent
AD Attribute

Equivalent
DB2 Clause

M modifiable AD=M INOUT

O non-modifiable AD=O IN

A input only AD=A OUT

t is one of the following Natural format tokens:

t Description l p dl Example

A Alphanumeric 1-253 0 1-32767
or
-

A30,0
or
A30,0,10

N Numeric unpacked 1-29 0-7 - N10,3

P Packed numeric 1-29 0-7 - P13,4

I Integer 2 or 4 0 - I2,0

F Floating point 0 - I4,0

B Binary 0 - B23,0

D Date 6 0 - D6

T Time 12 0 - T12

L Logical (unsupported)

 l is an integer denoting the length/scale of the field. For numeric and packed numeric fields, l denotes the total
number of digits of the field that is, the sum of the digits left and right of the decimal point. The Natural format
N7.3 is, for example, represented by N10.3. See also the table above.
p is an integer denoting the precision of the field. It is usually 0, except for numeric and packed fields where it
denotes the number of digits right of the decimal point. See also the table above.
d1 is also an integer denoting the occurrences of the alphanumeric array (alphanumeric only). See also the table
above.

This descriptive/control parameter is invisible to the calling Natural program and to the called Natural stored
procedure, but it has to be defined in the parameter definition of the stored procedure row in the
SYSIBM.SYSPROCEDURES table (only applies to DB2 for OS/390 Version 5 and below) or with the CREATE
PROCEDURE statement (DB2 UDB for OS/390 Version 6 and above) and parameter style GENERAL or
GENERAL WITH NULL. (???)

The following table shows the number of parameters which have to be defined in the SYSIBM.SYSPROCEDURES
table (only applies to DB2 for OS/390 Version 5 and below) or with the CREATE PROCEDURE statement (DB2
UDB for OS/390 Version 6 and above) depending on the number of user parameters and whether the client (i.e. the
caller of a stored procedure for DB2 for OS/390) and the server (i.e. the stored procedure for DB2 for OS/390) is
written in Natural or in a different host language. n (???) denotes the number of ’user’ (???) parameters.

Client\Server Natural not Natural

Natural n + 1 n (CALLMODE=NONE)

n + 1 (CALLMODE=NATURAL)

non-Natural n + 1 N

Copyright Software AG 20028

Natural SQL StatementsCALLMODE=NATURAL

Example issuing CALLDBPROC and READ RESULT SET statements:

 DEFINE DATA LOCAL
 1 ALPHA (A8)
 1 NUMERIC (N7.3)
 1 PACKED (P9.4)
 1 VCHAR (A20/1:5) INIT <’DB25SGCP’>
 1 INTEGER2 (I2)
 1 INTEGER4 (I4)
 1 BINARY2 (B2)
 1 BINARY4 (B4)
 1 BINARY12 (B12)
 1 FLOAT4 (F4)
 1 FLOAT8 (F8)
 1 INDEX-ARRAY (I2/1:11)
 1 INDEX-ARRAY1(I2)
 1 INDEX-ARRAY2(I2)
 1 INDEX-ARRAY3(I2)
 1 INDEX-ARRAY4(I2)
 1 INDEX-ARRAY5(I2)
 1 INDEX-ARRAY6(I2)
 1 INDEX-ARRAY7(I2)
 1 INDEX-ARRAY8(I2)
 1 INDEX-ARRAY9(I2)
 1 INDEX-ARRAY10(I2)
 1 INDEX-ARRAY11(I2)
 1 #RESP (I4)
 1 #RS1 (I4) INIT <99>
 1 #RS2 (I4) INIT <99>
 LOCAL
 1 V1 VIEW OF SYSIBM-SYSTABLES
 2 NAME
 1 V2 VIEW OF SYSIBM-SYSPROCEDURES
 2 PROCEDURE
 2 RESULT_SETS
 1 V (I2) INIT <99>
 END-DEFINE
 CALLDBPROC ’DAEFDB25.SYSPROC.SNGSTPC’ DSN8510-EMP
 ALPHA INDICATOR :INDEX-ARRAY1
 NUMERIC INDICATOR :INDEX-ARRAY2
 PACKED INDICATOR :INDEX-ARRAY3
 VCHAR(*) INDICATOR :INDEX-ARRAY4
 INTEGER2 INDICATOR :INDEX-ARRAY5
 INTEGER4 INDICATOR :INDEX-ARRAY6
 BINARY2 INDICATOR :INDEX-ARRAY7
 BINARY4 INDICATOR :INDEX-ARRAY8
 BINARY12 INDICATOR :INDEX-ARRAY9
 FLOAT4 INDICATOR :INDEX-ARRAY10
 FLOAT8 INDICATOR :INDEX-ARRAY11
 RESULT SETS #RS1 #RS2
 CALLMODE=NATURAL
 READ (10) RESULT SET #RS2 INTO VIEW V2 FROM SYSIBM-SYSTABLES
 WRITE ’PROC F RS :’ PROCEDURE 50T RESULT_SETS
 END-RESULT
 END

COMMIT

9Copyright Software AG 2002

COMMITNatural SQL Statements

The SQL COMMIT statement indicates the end of a logical transaction and releases all DB2 data locked during the
transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural END TRANSACTION statement.

No transaction data can be provided with the COMMIT statement.

If this command is executed from a stored procedure, Natural for DB2 does not execute the underlying commit
operation. This allows the stored procedure to commit updates against non DB2 databases.

Under CICS, the COMMIT statement is translated into an EXEC CICS SYNCPOINT command. If the file server is
used, an implicit end-of-transaction is issued after each terminal I/O. This is due to CICS-specific transaction
processing in pseudo-conversational mode.

Under IMS/TM, the COMMIT statement is not translated into an IMS Checkpoint command, but is ignored. An
implicit end-of-transaction is issued after each terminal I/O. This is due to IMS/TM-specific transaction processing.

Unless when used in combination with the WITH HOLD clause, a COMMIT statement must not be placed within a
database loop, since all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such
a loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own COMMIT command if the Natural program issues database calls, too.
The calling Natural program should issue the COMMIT statement on behalf of the external program.

DELETE
Related documentation: DELETE in SQL Statements

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE SQL statements are
supported as part of Natural SQL; the functionality of the Positioned DELETE statement corresponds to that of the
Natural DML DELETE statement.

With DB2, a table name in the FROM clause of a Searched DELETE statement can be assigned a correlation-name
(kursiv ???). This does not correspond to the standard SQL syntax definition and therefore belongs to the Natural
Extended Set.

The Searched DELETE statement must be used, for example, to delete a row from a self-referencing table, since
with self-referencing tables a Positioned DELETE is not allowed by DB2.

INSERT
The INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the DB2-specific syntactical items described above
apply.

PROCESS SQL
The PROCESS SQL statement is used to issue SQL statements to the underlying database. The statements are
specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those statements which
can be issued with the SQL statement "EXECUTE".

Copyright Software AG 200210

Natural SQL StatementsDELETE

In addition, Flexible SQL includes the following DB2-specific statements:

CALL
CONNECT
SET APPLICATION ENCODING SCHEME
SET CONNECTION
SET CURRENT DEGREE
SET CURRENT LC_CTYPE
SET CURRENT OPTIMIZATION HINT
SET CURRENT PACKAGESET
SET CURRENT PATH
SET CURRENT PRECISION
SET CURRENT RULES
SET CURRENT SQLID
SET host-variable= special-register RELEASE

Note:
To avoid transaction synchronization problems between the Natural environment and DB2, the COMMIT and
ROLLBACK statements must not be used within PROCESS SQL.

CALL

Natural for DB2 now supports the DB2 Version 4 (???) CALL statement by means of the PROCESS SQL statement.
However, the syntax of the CALL statement is restricted as shown below.

CALL
procedure-name
host-variable

(
[:U:] host-variable
constant
NULL

 ,...

)

The using descriptor parameter list format of the CALL statement is not supported.

Every host variable specified in the CALL parameter list should be prefixed with :U or the prefix should be omitted,
regardless how the parameters are defined in the stored procedures parameter list. To use :G as host-variable prefix
is strictly forbidden.

11Copyright Software AG 2002

CALLNatural SQL Statements

Example:

PROCESS SQL DB2-DDM

 <<CALL DB2PROC
 (:U:#USER,
 :U:#DATE,
 ’ALPHA’,
 NULL
)
 >>

DB2PROC is a procedure name to be defined as a stored procedure in DB2.

#USER, #DATE are Natural variables.

’ALPHA’ is a literal.

NULL is a keyword representing the NULL value.

Whether data are returned by the stored procedure called is only determined by the definition of the call parameter as
defined for the stored procedure in DB2.

READ RESULT SET
The READ RESULT SET statement reads a result set created by a stored procedure that was invoked by a
CALLDBPROC statement. For syntactical details, see the relevant sections in the Natural Statements documentation.

For details on how to specify the scroll direction for scroll-hv, see the SELECT statement in the Natural Statements
documentation.(nix zu finden unter SM/Natural for SQL statements/SELECT???)

ROLLBACK
The SQL ROLLBACK statement undoes all database modifications made since the beginning of the last logical
transaction. Logical transactions can start either after the beginning of a session or after the last COMMIT/END
TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records held during the transaction
are released.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION.

If this command is executed from a stored procedure in a user written Natural program, Natural for DB2 executes the
underlying rollback operation. This sets the caller into a must-rollback state. If this command is executed from a
stored procedure on behalf of the Natural error processing (implicit ROLLBACK), Natural for DB2 does not execute
the underlying rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, the ROLLBACK statement is translated into an EXEC CICS ROLLBACK command. However, if the
file server is used, only changes made to the database since the last terminal I/O are undone. This is due to
CICS-specific transaction processing in pseudo-conversational mode.

Under IMS/TM, the ROLLBACK statement is translated into an IMS Rollback (ROLB) command. However, only
changes made to the database since the last terminal I/O are undone. This is due to IMS/TM-specific transaction
processing.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed within a
database loop; instead, it has to be placed outside such a loop or after the outermost loop of nested loops.

Copyright Software AG 200212

Natural SQL StatementsREAD RESULT SET

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own ROLLBACK command if the Natural program issues database calls,
too. The calling Natural program should issue the ROLLBACK statement on behalf of the external program.

SELECT
Below is information on

Cursor-Oriented Selection
OPTIMIZE FOR integer ROWS Clause
WITH Clauses

Cursor-Oriented Selection

Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows (records)
from one or more DB2 tables, based on a search criterion. Since a database loop is initiated, the loop must be closed
by a LOOP (reporting mode) or END-SELECT statement. With this construction, Natural uses the same loop
processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled by Natural.

OPTIMIZE FOR integer ROWS Clause

[OPTIMIZE FOR integer ROWS]

The OPTIMIZE FOR integer ROWS clause is used to inform DB2 in advance of the number (integer) of rows to be
retrieved from the result table. Without this clause, DB2 assumes that all rows of the result table are to be retrieved
and optimizes accordingly.

This optional clause is useful if you know how many rows are likely to be selected, because optimizing for integer
rows can improve performance if the number of actually selected rows does not exceed the integer value (which can
be in the range from 0 to 2147483647).

Example:

SELECT name INTO #name FROM table
WHERE AGE = 2 OPTIMIZE FOR 100 ROWS

WITH Clauses

WITH - Isolation Level

WITH

CS
RR
RR KEEP UPDATE LOCK
RS
RS KEEP UPDATE LOCKS
UR

13Copyright Software AG 2002

SELECTNatural SQL Statements

This WITH clause allows you to specify an explicit isolation level with which the statement is to be executed. The
following options are provided:

Option Meaning

CS Cursor stability

RR Repeatable Read

RS Read Stability

RS KEEP UPDATE LOCKS Only valid if specified in a FOR UPDATE OF statement.(???)

Read Stability and retaining update locks.

RR KEEP UPDATE LOCKS Only valid if specified in a FOR UPDATE OF statement.(???)

Repeatable Read and retaining update locks.

UR Uncommitted Read

WITH UR can only be specified within a SELECT statement and when the table is read-only. The default isolation
level is determined by the isolation of the package or plan into which the statement is bound. The default isolation
level also depends on whether the result table is read-only or not. To find out the default isolation level, refer to the
IBM literature.

Note:
This option also works for non-cursor selection.

QUERYNO (Unterpunkt zu SELECT

[QUERYNO integer]

The QUERNO clause specifies the number of queries to be processed and traced for recodings as specified withthe
EXPLAIN statement ??? The number of queries is used as QUERYNO in the plan table for the rows that contain
information about this statement.

FETCH FIRST integer ROWS ONLY

[FETCH FIRST{ integer } { ROWS} ONLY]

[1] ROW???

The FETCH FIRST clause limits the number of rows to be fetched. It improves the performance of queries with
potentially large result sets if only a limited number of rows is needed.

WITH HOLD

[WITH HOLD]

Copyright Software AG 200214

Natural SQL StatementsWITH Clauses

The WITH HOLD clause is used to prevent cursors from being closed by a commit operation within database loops.
If WITH HOLD is specified, a commit operation commits all the modifications of the current logical unit of work,
but releases only locks that are not required to maintain the cursor. This optional clause is mainly useful in batch
mode; it is ignored in CICS pseudo-conversational mode and in IMS message-driven programs.

Example:

SELECT name INTO #name FROM table
WHERE AGE = 2 WITH HOLD

WITH RETURN

[WITH RETURN]

The WITH RETURN clause is used to create result sets. Therefore it should only be used in programs which operate
as stored procedure. If the WITH RETURN clause is specified in a SELECT statement, the underlying cursor
remains open when the associated processing loop is left, except when the processing loop had read all rows of the
result set itself. During first execution of the processing loop, only the cursor is opened. The first row is not yet
fetched. This allows the Natural program to return a full result set to the caller of the stored procedure. It is up to the
Natural program to decide how many rows are processed by the program itself and how many unprocessed rows are
returned to the caller of the stored procedure. If it wants to process rows of the select operation itself, it should code

IF *counter =1 ESCAPE TOP END-IF

in order to avoid processing of the first "empty row" in the processing loop. If it decides by some criteria of its own
to terminate its own processing of rows, it should code

If condition ESCAPE BOTTOM END-IF

If the program reads all rows of the result set, the cursor is closed and no result set is returned for this SELECT
WITH RETURN to the caller of the stored procedure.

The following programs are examples for retrieving full result sets (Example 1) and partial result sets (Example 2).

Example 1:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Return all rows of the result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM- SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
ESCAPE BOTTOM
END-SELECT
END

15Copyright Software AG 2002

WITH ClausesNatural SQL Statements

Example 2:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Read the first two rows and return the rest as result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM- SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
WRITE PROCEDURE *COUNTER
IF *COUNTER = 1 ESCAPE TOP END-IF
IF *COUNTER =3 ESCAPE BOTTOM END-IF
END-SELECT
END

WITH INSENSITIVE/SENSITIVE (????)

CALL
procedure-name
host-variable

(
[:U:] host-variable
constant
NULL

 ,...

)

[WITH {INSENSITIVE SCROLL} [.] scroll_hv [GIVING [.] sqlcode]]

[WITH {SENSITIVE STATIC SCROLL} [.] scroll_hv [GIVING [.] sqlcode]]

The WITH SENSITIVE/SENSITIVE clause is used to process (???) DB2 scrollable cursors. With scrollable cursors,
an NDB (???) application can position on any row in a result set. For non-scrollable cursors, the data can only be
read sequentially, from top to bottom. See also....????

NDB moves (???) the result sets of INSENSITIVE and SENSITIVE STATIC scrollable cursors into a temporary
database space when the relevant cursos is opened. After scrollable cursors have been openend, the NDB (???)
application can access and read (???) any row of the result set at any time in any direction (???).

Non-Cursor Selection - SELECT SINGLE

The Natural statement SELECT SINGLE provides the functionality of a non-cursor selection (singleton SELECT);
that is, a select expression that retrieves at most one row without using a cursor.

Copyright Software AG 200216

Natural SQL StatementsNon-Cursor Selection - SELECT SINGLE

Since DB2 supports the singleton SELECT command in static SQL only, in dynamic mode, the Natural SELECT
SINGLE statement is executed like a set-level SELECT statement, which results in a cursor operation. However,
Natural checks the number of rows returned by DB2. If more than one row is selected, a corresponding error
message is returned.

UPDATE
Both the cursor-oriented or Positioned UPDATE, and the non-cursor or Searched UPDATE SQL statements are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With DB2, the name of a table or Natural view to be referenced by a Searched UPDATE can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs to the
Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since DB2 does not
allow updating of columns of a primary key by using a Positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE OF and SET
lists. Therefore, ensure that your view contains only fields which can be updated; otherwise, a negative sqlcode (oder
SQLCODE ???) is returned by DB2.

17Copyright Software AG 2002

UPDATENatural SQL Statements

	Natural SQL Statements
	Common Syntactical Items
	atom
	comparison
	factor
	scalar-function †???‡
	column function †klein???mit Bindestrich erforderlich???‡
	scalar-operator
	special-register
	units
	case-expression

	CALLDBPROC
	TIME ???
	CALLMODE=NATURAL

	COMMIT
	DELETE
	INSERT
	PROCESS SQL
	CALL

	READ RESULT SET
	ROLLBACK
	SELECT
	Cursor-Oriented Selection
	OPTIMIZE FOR integer ROWS Clause
	WITH Clauses
	WITH - Isolation Level
	QUERYNO †Unterpunkt zu SELECT
	[QUERYNO integer]
	WITH HOLD
	WITH RETURN
	WITH INSENSITIVE/SENSITIVE †????‡
	€

	Non-Cursor Selection - SELECT SINGLE

	UPDATE

